طبقه بندی نیمه اتوماتیک ژئومورفومتریکی یاردانگ های لوت با شبکه های عصبی مصنوعی
Authors
abstract
یاردانگ های منطقة فراخشک لوت یکی از منحصربه فردترین لندفرم های آّبی- بادی مناطق بیابانی است. شناخت و پهنه بندی ژئومورفومتریک این یاردانگ ها، با توجه به میسرنبودنِ بازدیدهای میدانی و دسترسی به منطقه، دقت مطلوبی نخواهد داشت. در این مطالعه یاردانگ های دشت لوت، با توپوگرافی ویژه و خاص، با یکی از روش های شبکه های عصبی مصنوعی با عنوان «الگوریتم خودسازمانده» مطالعه و طبقه بندی شد. نخست 22 پارامتر مورفومتریک نمای اول، نمای دوم، و نمای سوم از مدل رقومی ارتفاعی با اندازة سلول 10 متر بر اساس برنامه نویسی و با کمک برازش سطوح درجة دوم و درجة سوم در نرم افزار مت لب محاسبه و استخراج شد. در مرحلة بعد، 7 پارامتر مورفومتریک مؤثر در طبقه بندی و همین طور تعداد کلاس های بهینة طبقه بندی طی دو مرحله با استفاده از شاخص فاکتور ضریب بهینه و ضریب داویس - بولدین (ضریب دی- بی) تعیین گردید. سپس، از آنالیز حساسیت به منظور تعیین میزان تأثیر هر یک از پارامترهای مورفومتریک ورودی بر روی نتایج استفاده شد. در نهایت، پارامترهای بهینة مورفومتریک با الگوریتم شبکة خودسازمانده طبقه بندی شد و نتایج با استفاده از اطلاعات موجود و نقشه های توپوگرافی مقایسه گردید. نتایج این تحقیق نشان داد که پارامترهای انحنای سطحی، چرخش، انتگرال ارتفاع سنجی، کل انحنای تجمعی، شیب، انحنای حدی، و متوسط انحنا بهینه ترین پارامترهای مورفومتریک در جدایی یاردانگ ها هستند. همچنین، پارامترهای فوق یاردانگ های لوت را به هفت پهنه تقسیم می کنند؛ این پهنه ها عبارت اند از: درة گردنه ای، گودی بیضوی، کریدور کم شیب، شانة یاردانگ با شیب مقعر، شانة یاردانگ با شیب محدب، رأس یاردانگ، و آبراهة کریدور. نتایج تحلیل حساسیت نشان داد که نتایج طبقه بندی به پارامترهای چرخش، متوسط انحنا، و انتگرال ارتفاع سنجی دارای بیشترین حساسیت اند و جفت پارامترهای انتگرال ارتفاع سنجی- انحنای حدی دارای بیشترین قدرت تفکیک کلاس ها هستند. به طور کلی، شبکة خودسازمانده به عنوان یک الگوریتم نظارت نشدة شبکه های عصبی مصنوعی در تلفیق پارامترهای مورفومتریک برای آنالیز نیمه اتوماتیک لندفرم های بیابان بسیار کارآمد است.
similar resources
طبقهبندی نیمهاتوماتیک ژئومورفومتریکی یاردانگهای لوت با شبکههای عصبی مصنوعی
یاردانگهای منطقة فراخشک لوت یکی از منحصربهفردترین لندفرمهای آّبی- بادی مناطق بیابانی است. شناخت و پهنهبندی ژئومورفومتریک این یاردانگها، با توجه به میسرنبودنِ بازدیدهای میدانی و دسترسی به منطقه، دقت مطلوبی نخواهد داشت. در این مطالعه یاردانگهای دشت لوت، با توپوگرافی ویژه و خاص، با یکی از روشهای شبکههای عصبی مصنوعی با عنوان «الگوریتم خودسازمانده» مطالعه و طبقهبندی شد. نخست 22 پارامتر مورفوم...
full textبرآورد تغییرات سطح پوشش جنگل های رودسر با استفاده از روش های طبقه بندی شبکه عصبی مصنوعی و حداکثر احتمال
امروزه کسب آگاهی و دانش در رابطه با پوشش گیاهی نقش مهمی را در مدیریت خاکها ایفا میکند. بااین وجود برآورد پوشش گیاهی به روش معمولی که شامل برآورد کلی از پوشش گیاهی است هم زمانبر است و هم اطلاعات چندان دقیقی را به دست نمیدهد. از این رو سنجش از دور فنآوری بسیار مفیدی است که به دلیل کاهش زمان و هزینه، بر سایر روشها ارجحیت داده میشود. در این تحقیق سعی بر آن شد با استفاده از تکنیکهای سنجش از د...
full textطبقه بندی نظارت شده جوامع گیاهی شمشاد هیرکانی با استفاده از شبکه عصبی مصنوعی
در این پژوهش، کاربرد روش شبکه عصبی مصنوعی یا MLP در فرآیند تخصیص رلوه- گروهها/جوامعگیاهی با استفاده از پایگاه اطلاعاتی ترکیبگیاهی جنگلهای شمشاد هیرکانی (Buxus hyrcana Pojark.) ارزیابی شد. برای این منظور، نخست گروههای بومشناختی و جامعهشناختی شمشاد هیرکانی به ترتیب با استفاده از نتایج دو روش عددی TWINSPAN و تجربی براون-بلانکه تعیین شد. نتایج هر دو دارنگاره عددی و تجربی طبقهبندی مشتمل بر 7...
full textنرمالیزاسیون رادیومتریک اتوماتیک تصاویر ماهواره ای چندزمانه مبتنی برتبدیل IR-MAD و شبکه های عصبی مصنوعی
نرمالیزاسیون رادیومتریک نسبی، اغلب در آنالیزهای تصاویر ماهوارهای چندزمانه، خصوصاً در آشکارسازی تغییرات کاربری اراضی مورد استفاده قرار میگیرد. در این تحقیق ضمن بررسی تبدیل IR-MAD، تکنیک جدیدی مبتنی بر تبدیل IR-MAD و شبکههای عصبی مصنوعی توسعه داده شده است. تکنیک پیشنهادی بر روی تصاویر ماهوارهای چندزمانه لندست تیام متعلق به سالهای 1989و2010 شهر تبریز، پیادهسازی شده است. استفاده از ترکیب خطی...
full textدرجه بندی زعفران بر اساس ویژگی های ظاهری با استفاده از شبکه های عصبی مصنوعی
زعفران بهعنوان یک کالای تجاری مهم در کشور بهشمار میآید و توجه به مکانیزه کردن آن از مرحله تولید تا بستهبندی اهمیت زیادی دارد. در بدو ورود زعفران به فرایند کیفی سنجی در آزمایشگاه ، ارزیابی اولیه بر اساس مشخصات ظاهری زعفران توسط شخص خبره انجام میشود. لیکن بروز خطای انسانی در تشخیص کیفیت زعفران بر مبنای ویژگیهای ظاهری آن امری اجتنابناپذیر است؛ استفاده از تکنیکهای مبتنی بر هوش مصنوعی میت...
full textمقایسه روش های طبقه بندی، شبکه عصبی مصنوعی و رگرسیون چندمتغیره در برآورد بازیابی فلز از بلوک کانسنگ
با توجه به نقش بازیابی در محاسبه ارزش اقتصادی بلوک کانسنگ و تأثیر مقدار این ارزش بر محاسبات طراحی و برنامهریزی تولید معدن، تعیین بازیابی فلز از بلوک کانسنگ ارسالی به کارخانه فرآوری، از اهمیت بالایی برخوردار است. هدف از این پژوهش، بررسی قابلیت برآورد بازیابی بلوک کانسنگ به<span lang="AR-SA" dir="R...
full textMy Resources
Save resource for easier access later
Journal title:
مرتع و آبخیزداریPublisher: دانشکده منابع طبیعی دانشگاه تهران
ISSN 5044-2008
volume 67
issue 3 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023